Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Prosthet Dent ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38553302

RESUMO

STATEMENT OF PROBLEM: The difference in chemical composition between denture base resin and denture teeth requires the development of bonding protocols that increase the union between the materials. PURPOSE: The purpose of this in vitro study was to evaluate the impact of different bonding protocols on the bond between heat-polymerized and 3-dimensionally (3D) printed acrylic resin denture bases and acrylic resin prefabricated and 3D printed artificial teeth. MATERIAL AND METHODS: Four types of artificial teeth were evaluated: prefabricated acrylic resin (VITA MFT) and 3D printed (Cosmos TEMP, PRIZMA 3D Bio Denture, and PrintaX AA Temp) bonded to 20×24-mm cylinders of heat-polymerized (VipiWave) and 3D printed (Cosmos Denture, PRIZMA 3D Bio Denture, and PrintaX BB Base) denture bases. Three bonding protocols were tested (n=20): mechanical retention with perforation + monomer (PT1), mechanical retention with perforation + airborne-particle abrasion with 50-µm aluminum oxide + monomer (PT2), and mechanical retention with perforation + Palabond (PT3). Half of the specimens in each group received 10 000 thermocycles and were then subjected to the bonding test at a crosshead speed of 1 mm/minute. The failure type was analyzed and scanning electron micrographs made. Additionally, surface roughness (Ra) and wettability (degree) were analyzed (n=15). ANOVA was used to evaluate the effect of the bonding protocol, and the Student t test was applied to compare the experimental groups with the control (α=.05). For type of failure, a descriptive analysis was carried out using absolute and relative frequency. The Kruskal-Wallis test was used to evaluate the surface changes (α=.05). RESULTS: Among the protocols, PT3 with in Yller and PT2 with Prizma had the highest bond strengths of the heat-polymerized denture base and 3D printed teeth (P<.05). When comparing the experimental groups with the control, PT3 and PT2 had greater union with the 3D printed denture base + 3D printed teeth (in Yller), with no difference from the heat-polymerized denture base + prefabricated teeth in acrylic resin. The treatment of the 3D printed tooth surfaces affected the surface roughness of Prizma (P<.001) and wettability (P<.001). CONCLUSIONS: To increase the bond between Yller 3D printed denture base + 3D printed teeth, a bonding protocol including mechanical retention with perforation + Palabond or mechanical retention with perforation + airborne-particle abrasion with aluminum oxide + monomer is indicated. For the other materials tested, further bonding protocols need to be investigated.

2.
Heliyon ; 10(1): e23626, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192807

RESUMO

Statement of problem: One of the main challenges facing dental implant success is peri-implantitis. Recent evidence indicates that titanium (Ti) corrosion products and undetected-residual cement are potential risk factors for peri-implantitis. The literature on the impact of various types of dental cement on Ti corrosion is very limited. Purpose: This study aimed to determine the influence of dental cement on Ti corrosion as a function of cement amount and type. Materials and methods: Thirty commercially pure Ti grade 4 discs (19 × 7mm) were polished to mirror-shine (Ra ≈ 40 nm). Samples were divided into 10 groups (n = 3) as a cement type and amount function. The groups were no-cement as control, TempBond NE (TB3mm, TB5mm, and TB8mm), FujiCEM-II (FC3mm, FC5mm, and FC8mm), and Panavia-F-2.0 (PC3mm, PC5mm, and PC8mm). Tafel's method estimated corrosion rate (icorr) and corresponding potential (Ecorr) from potentiodynamic curves. Electrochemical Impedance Spectroscopy (EIS) data was utilized to obtain Nyquist and Bode plots. An equivalent electrical circuit estimated polarization resistance (Rp) and double-layer capacitance (Cdl). Inductively coupled plasma mass spectrometry (ICP-MS) analysis was conducted to analyze the electrolyte solution after corrosion. pH measurements of the electrolyte were recorded before and after corrosion tests. Finally, the corroded surface was characterized by a 3D white-light microscope and scanning electron microscope. Statistical analysis was conducted using either one-way ANOVA followed by Tukey's Post Hoc test or Kruskal-Wallis followed by Dunn's test based on data distribution. Results: Based on cement amount, FC and PC significantly increased icorr in higher amounts (FC8mm-icorr = 8.22 × 10-8A/cm2, PC8mm-icorr = 5.61 × 10-8A/cm2) compared to control (3.35 × 10-8A/cm2). In contrast, TB3mm decreased icorr significantly compared to the control. As a function of cement type, FC increased icorr the most. EIS data agrees with these observations. Finally, corroded surfaces had higher surface roughness (Ra) compared to non-corroded surfaces. Conclusion: The study indicated that cement types FC and PC led to increased Ti-corrosion as a function of a higher amount. Hence, the implant stability could be impacted by the selection, excessive cement, and a potentially increased risk of peri-implantitis.

3.
Clin Oral Implants Res ; 35(3): 268-281, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38131526

RESUMO

AIM: The aim of the study was to evaluate several mechanical and chemical decontamination methods associated with a newly introduced biofilm matrix disruption strategy for biofilm cleaning and preservation of implant surface features. MATERIALS AND METHODS: Titanium (Ti) discs were obtained by additive manufacturing. Polymicrobial biofilm-covered Ti disc surfaces were decontaminated with mechanical [Ti curette, Teflon curette, Ti brush, water-air jet device, and Er:YAG laser] or chemical [iodopovidone (PVPI) 0.2% to disrupt the extracellular matrix, along with amoxicillin; minocycline; tetracycline; H2 O2 3%; chlorhexidine 0.2%; NaOCl 0.95%; hydrocarbon-oxo-borate-based antiseptic] protocols. The optimal in vitro mechanical/chemical protocol was then tested in combination using an in vivo biofilm model with intra-oral devices. RESULTS: Er:YAG laser treatment displayed optimum surface cleaning by biofilm removal with minimal deleterious damage to the surface, smaller Ti release, good corrosion stability, and improved fibroblast readhesion. NaOCl 0.95% was the most promising agent to reduce in vitro and in vivo biofilms and was even more effective when associated with PVPI 0.2% as a pre-treatment to disrupt the biofilm matrix. The combination of Er:YAG laser followed by PVPI 0.2% plus NaOCl 0.95% promoted efficient decontamination of rough Ti surfaces by disrupting the biofilm matrix and killing remnants of in vivo biofilms formed in the mouth (the only protocol to lead to ~99% biofilm eradication). CONCLUSION: Er:YAG laser + PVPI 0.2% + NaOCl 0.95% can be a reliable decontamination protocol for Ti surfaces, eliminating microbial biofilms without damaging the implant surface.


Assuntos
Implantes Dentários , Lasers de Estado Sólido , Titânio , Descontaminação/métodos , Propriedades de Superfície , Biofilmes
4.
ACS Appl Bio Mater ; 6(12): 5630-5643, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38052058

RESUMO

Abutment components (i.e., fixtures associated with oral implants) are essentially made of titanium (Ti), which is continuously exposed to the hash oral environment, resulting in scratching. Thus, such components need to be protected, and surface treatments are viable methods for overcoming long-term damage. Diamond-like carbon (DLC), an excellent protective material, is an alternative surface-treatment material for Ti abutments. Here, we demonstrate that a silicon interlayer for DLC film growth and the pulsed-direct current plasma-enhanced chemical vapor deposition (DC-PECVD) method enables the deposition of an enhanced protective DLC film. As a result, the DLC film demonstrated a smooth topography with a compact surface. Furthermore, the DLC film enhanced the mechanical (load-displacement, hardness, and elastic modulus) and tribological properties of Ti as well as increased its corrosion resistance (16-fold), which surpassed that of a bare Ti substrate. The biofilm formed (Streptococcus sanguinis) after 24 h exhibited an equal bacterial load (∼7 Log colony-forming units) for both the groups (Ti and DLC). In addition, the DLC film exhibited good cytocompatibility, owing to its noncytotoxicity toward human gingival fibroblast cells. Therefore, DLC deposition via DC-PECVD can be considered to be a promising protective and cytocompatible alternative for developing implant abutments with enhanced mechanical, tribological, and electrochemical properties.


Assuntos
Biofilmes , Carbono , Humanos , Carbono/química , Próteses e Implantes , Titânio/química , Gases
5.
Int J Prosthodont ; 36(6): 769-776, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38109398

RESUMO

PURPOSE: To identify the most effective protocol for bonding denture bases and artificial teeth made with different computer-aided design and manufacturing (CAD/CAM) materials (milled and 3D-printed) and conventional heat-polymerized resins. MATERIALS AND METHODS: This review was performed according to the Preferred Reporting Items for Systematic and Meta-Analysis (PRISMA) criteria and registered in the International Prospective Registry of Systematic Reviews PROSPERO (CRD42021276084). An electronic search was performed independently by two examiners in PubMed/MEDLINE, Cochrane Library, Scopus, Web of Science, ProQuest, and OpenGrey databases for articles published up to and including December 2021. RESULTS: The electronic search returned 806 articles, and after duplicates were removed, 589 articles remained. Four articles met the eligibility criteria to be included in this study. After evaluating the different combinations of denture base materials and artificial teeth, it was found that IvoBase CAD Bond (Ivoclar Vivadent) was effective for bonding CAD/CAM denture bases to prefabricated acrylic resin teeth, which showed no differences compared to the heat-polymerized resin denture base bonded to prefabricated acrylic resin teeth (χ2: 68.56; I2: 96%; P < .001). CONCLUSIONS: The IvoBase CAD Bond bonding system can be used for the fabrication of CAD/CAM denture bases with prefabricated acrylic resin teeth.


Assuntos
Colagem Dentária , Dente Artificial , Resinas Acrílicas , Desenho Assistido por Computador , Bases de Dentadura , Teste de Materiais , Propriedades de Superfície
6.
J Prosthet Dent ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37978008

RESUMO

STATEMENT OF PROBLEM: The union of the metal removable partial denture framework to the heat polymerized acrylic resin is related to prosthesis longevity. However, methods to enhance this bond are not clear to clinicians and dental laboratory technicians. PURPOSE: The purpose of this systematic review was to identify which metal surface treatments best increase the bond strength between heat polymerized acrylic resin and removable partial denture alloys. MATERIAL AND METHODS: This review was carried out following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and registered in the International Prospective Registry of Systematic Reviews (PROSPERO) database (CRD42022384926). Electronic searches were carried out independently, by 3 examiners in Medline/PubMed, Scopus, and Web of Science databases, and in the nonpeer-reviewed literature via ProQuest. RESULTS: The electronic searches resulted in 4143 articles, with 4055 after removing duplicates. After reading the titles and abstracts, 37 articles were selected for reading in full-text version, from which 6 articles were included. All studies evaluated materials for conventional acrylic resin denture base (heat polymerized), processed by water bath, bonded to metal. For the metal framework alloys, cobalt chromium (Co-Cr) alloys were used in 2 studies, titanium (Ti) in 2 studies, and Co-Cr and Ti in the other 2 studies. Different metal surface treatments were used as airborne-particle abrasion with aluminum oxide (particle sizes of 50 µm, 110 µm, and 250 µm) followed by the primer application and the isolated use of the primer, compared to the absence of isolated intervention or airborne-particle abrasion of the metal surface. Among the different primers used, those based on 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) showed the highest acrylic resin-to-metal bond strength values. CONCLUSIONS: Airborne-particle abrading the metal with Al2O3 followed by applying a 10-MDP-based primer, increased the bond strength between metal framework alloys and heat polymerized acrylic resin denture base material.

7.
J Prosthet Dent ; 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37845114

RESUMO

STATEMENT OF PROBLEM: An effective bond between a denture lining material and the denture base resin is necessary for proper function. Regarding the new technologies for manufacturing denture bases, a systematic search of the literature on this topic is lacking. PURPOSE: The purpose of this systematic review and meta-analysis was to evaluate the bond strength between denture lining material and computer-aided design and computer-aided manufacturing (CAD-CAM) denture base resin (milled and 3-dimensionally printed) versus conventional denture base resin. MATERIAL AND METHODS: Electronic databases (PubMed/MEDLINE, Scopus, and Web of Science) were independently searched by 4 researchers for relevant studies published up to April 2023. The population, intervention, comparison, and outcome (PICO) question was: "Comparing conventional and CAD-CAM (milled and 3-dimensionally printed) denture base materials, which promote greater bond strength when associated with denture lining material?" A meta-analysis was performed based on mean ±standard deviation bond strength values between denture base resins and denture lining material with 95% confidence intervals. RESULTS: Five in vitro studies were included. For bond strength, no difference was noted between conventional and milled denture base resin (confidence interval: -0.99 [-2.17 to 0.20]; heterogeneity: t2=0.57; Chi2:4.57; I2=78%; P=.10), and conventional resin had better values compared with those of 3-dimensionally (3D) printed (confidence interval: 3.03 [2.40-3.66]; heterogeneity: t2=0.00; Chi2:0.56; I2=0%; P<.001) when relined with soft materials. The milled denture base resin was better than the conventional (confidence interval: -0.85 [-1.33 to -0.38]; heterogeneity: Chi2:28.87; I2=93%; P<.001), with no difference between 3D printed and conventional (confidence interval: 0.18 [-4.23 to 4.59]; heterogeneity: t2=16.51; Chi2:130.99; I2=98%; P=.94) for hard liners. CONCLUSIONS: The bond strength between resins for milled CAD-CAM denture bases and denture lining material was similar to that of conventional denture base resin, regardless of the consistency of the denture lining material. The bond strength to 3D printed CAD-CAM resin was lower than that of the milled version.

8.
J Prosthet Dent ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37716897

RESUMO

STATEMENT OF PROBLEM: Although polyetheretherketone (PEEK) implant healing abutments have become popular because of their esthetic, mechanical, and chemical properties, studies analyzing oral polymicrobial adhesion to PEEK abutments are lacking. PURPOSE: The purpose of this in vitro and in vivo study was to evaluate oral microbial adhesion and colonization on titanium (Ti) and PEEK healing abutments. MATERIAL AND METHODS: Ti (N=35) and PEEK substrates (N=35) were evaluated in vitro in terms of the initial adhesion (1 hour) or biofilm accumulation (48 hours) of Candida albicans and a polymicrobial inoculum using stimulated human saliva to mimic a diverse oral microbiome. Surface decontamination ability was evaluated after 24 hours of in vitro biofilm formation after exposure to an erbium-doped yttrium aluminum garnet (Er:YAG) laser. Conventional and flowable composite resin veneering on PEEK was also tested for microbial adhesion. In addition, an in vivo model with 3 healthy volunteers was conducted by using a palatal appliance containing the tested materials (3 or 4 specimens of each material per appliance) for 2 days to evaluate the effect of substrate on the microbial profile. Biofilms were evaluated by live cell counts and scanning electron microscopy images, and the microbial profile by Checkerboard deoxyribonucleic acid (DNA)-DNA hybridization. The t test and Mann-Whitney test were used to compare the groups (α=.05). RESULTS: PEEK and Ti materials showed similar fungal adhesion (P>.05). Although the PEEK surface limited the initial in vitro polymicrobial adhesion (approximately 2 times less) compared with Ti (P=.040), after 48 hours of biofilm accumulation, the microbial load was statistically similar (P=.209). Er:YAG laser decontamination was more effective on PEEK than on Ti surfaces, reducing approximately 11 times more microbial accumulation (P=.019). Both composite resins tested showed similar microbial adhesion (1 hour). In vivo, the PEEK material showed reduced levels of 6 bacterial species (P<.05), including the putative pathogen Treponema denticola. CONCLUSIONS: Although PEEK and Ti had similar bacterial and fungus biofilm attachment and accumulation, PEEK promoted a host-compatible microbial profile with a significantly reduced T. denticola load.

9.
Tribol Int ; 1872023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37720691

RESUMO

Early detection and prediction of bio-tribocorrosion can avert unexpected damage that may lead to secondary revision surgery and associated risks of implantable devices. Therefore, this study sought to develop a state-of-the-art prediction technique leveraging machine learning(ML) models to classify and predict the possibility of mechanical degradation in dental implant materials. Key features considered in the study involving pure titanium and titanium-zirconium (zirconium = 5, 10, and 15 in wt%) alloys include corrosion potential, acoustic emission(AE) absolute energy, hardness, and weight-loss estimates. ML prototype models deployed confirms its suitability in tribocorrosion prediction with an accuracy above 90%. Proposed system can evolve as a continuous structural-health monitoring as well as a reliable predictive modeling technique for dental implant monitoring.

10.
ACS Biomater Sci Eng ; 9(9): 5389-5404, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37561763

RESUMO

Along with poor implant-bone integration, peri-implant diseases are the major causes of implant failure. Although such diseases are primarily triggered by biofilm accumulation, a complex inflammatory process in response to corrosive-related metallic ions/debris has also been recognized as a risk factor. In this regard, by boosting the titanium (Ti) surface with silane-based positive charges, cationic coatings have gained increasing attention due to their ability to kill pathogens and may be favorable for corrosion resistance. Nevertheless, the development of a cationic coating that combines such properties in addition to having a favorable topography for implant osseointegration is lacking. Because introducing hydroxyl (-OH) groups to Ti is essential to increase chemical bonds with silane, Ti pretreatment is of utmost importance to achieve such polarization. In this study, plasma electrolytic oxidation (PEO) was investigated as a new route to pretreat Ti with OH groups while providing favorable properties for implant application compared with traditional hydrothermal treatment (HT). To produce bactericidal and corrosion-resistant cationic coatings, after pretreatment with PEO or HT (Step 1), surface silanization was subsequently performed via immersion-based functionalization with 3-aminopropyltriethoxysilane (APTES) (Step 2). In the end, five groups were assessed: untreated Ti (Ti), HT, PEO, HT+APTES, and PEO+APTES. PEO created a porous surface with increased roughness and better mechanical and tribological properties compared with HT and Ti. The introduction of -OH groups by HT and PEO was confirmed by Fourier transform infrared spectroscopy and the increase in wettability producing superhydrophilic surfaces. After silanization, the surfaces were polarized to hydrophobic ones, and an increase in the amine functional group was observed by X-ray photoelectron spectroscopy, demonstrating a considerable amount of positive ions. Such protonation may explain the enhanced corrosion resistance and dead bacteria (Streptococcus aureus and Escherichia coli) found for PEO+APTES. All groups presented noncytotoxic properties with similar blood plasma protein adsorption capacity vs the Ti control. Our findings provide new insights into developing next-generation cationic coatings by suggesting that a tailorable porous and oxide coating produced by PEO has promise in designing enhanced cationic surfaces targeting biomedical and dental implant applications.


Assuntos
Silanos , Titânio , Propriedades de Superfície , Titânio/farmacologia , Titânio/química , Cátions
11.
Bioact Mater ; 30: 46-61, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37521273

RESUMO

Artificial bone grafting materials such as collagen are gaining interest due to the ease of production and implantation. However, collagen must be supplemented with additional coating materials for improved osteointegration. Here, we report room-temperature atomic layer deposition (ALD) of MgO, a novel method to coat collagen membranes with MgO. Characterization techniques such as X-ray photoelectron spectroscopy, Raman spectroscopy, and electron beam dispersion mapping confirm the chemical nature of the film. Scanning electron and atomic force microscopies show the surface topography and morphology of the collagen fibers were not altered during the ALD of MgO. Slow release of magnesium ions promotes bone growth, and we show the deposited MgO film leaches trace amounts of Mg when incubated in phosphate-buffered saline at 37 °C. The coated collagen membrane had a superhydrophilic surface immediately after the deposition of MgO. The film was not toxic to human cells and demonstrated antibacterial properties against bacterial biofilms. Furthermore, in vivo studies performed on calvaria rats showed MgO-coated membranes (200 and 500 ALD) elicit a higher inflammatory response, leading to an increase in angiogenesis and a greater bone formation, mainly for Col-MgO500, compared to uncoated collagen. Based on the characterization of the MgO film and in vitro and in vivo data, the MgO-coated collagen membranes are excellent candidates for guided bone regeneration.

12.
Clin Implant Dent Relat Res ; 25(4): 767-781, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37386807

RESUMO

BACKGROUND: Antibiotics are the most effective adjuncts in the treatment of periodontitis. However, the benefits of these agents in treating peri-implantitis are still debatable and demand further analysis. PURPOSE: The aim of this review was to critically appraise the literature on the use of antibiotics to treat peri-implantitis, with the ultimate goal of supporting evidence-based clinical recommendations, defining gaps in knowledge and guiding future studies on this topic. METHODS: A systematized literature search was conducted in MEDLINE/PubMed and Cochrane Library databases for randomized clinical trials (RCTs) on patients with peri-implantitis treated by mechanical debridement-only or with adjunctive use of local or systemic antibiotics. Clinical and microbiological data were extracted from the RCTs included. The findings were critically reviewed, interpreted, and discussed. An overview of antibiotic-loaded dental implant materials in peri-implantitis treatment was also provided. RESULTS: Twelve RCTs testing local/systemic antibiotics were included. Although not always statistically significant, all antibiotic-treated groups had greater reductions in mean PD than those treated by mechanical debridement-only. The only clinically relevant antibiotic protocol supported by one RCT with low risk of bias and long-lasting benefits was systemic metronidazole (MTZ). Studies using ultrasonic debridement reported better outcomes. No RCTs to date have tested MTZ-only or with amoxicillin (AMX) as adjuncts to open-flap implant debridement. In vitro/animal studies suggested that biomaterials with antimicrobial properties are promising to treat peri-implantitis. CONCLUSION: There are insufficient data to support a particular evidence-based antibiotic protocol to treat peri-implantitis using surgical or nonsurgical therapy, but some conclusions may be drawn. Systemic MTZ adjunct to ultrasonic debridement is an effective protocol to improve the outcomes of nonsurgical treatment. Future studies should assess the clinical and microbiological effects of MTZ and MTZ + AMX as adjuncts to optimal nonsurgical implant decontamination protocols or open-flap debridement. In addition, new locally delivered drugs and antibiotic-loaded surfaces should be assessed by RCTs.


Assuntos
Implantes Dentários , Peri-Implantite , Periodontite , Humanos , Antibacterianos/uso terapêutico , Peri-Implantite/tratamento farmacológico , Peri-Implantite/cirurgia , Peri-Implantite/microbiologia , Amoxicilina/uso terapêutico , Metronidazol/uso terapêutico , Periodontite/tratamento farmacológico , Periodontite/cirurgia , Implantes Dentários/efeitos adversos
13.
J Oral Microbiol ; 15(1): 2213111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37261036

RESUMO

We assessed the level of evidence for the presence of new periodontal pathogens by (i) comparing the occurrence of non-classical periodontal taxa between healthy vs. periodontitis patients (Association study); (ii) assessing the modifications in the prevalence and levels of these species after treatments (Elimination study). In the Association study, we compared the prevalence and levels of 39 novel bacterial species between periodontally healthy and periodontitis patients. In the Elimination study, we analyzed samples from periodontitis patients assigned to receive scaling and root planing alone or with metronidazole+ amoxicillin TID/ 14 days. Levels of 79 bacterial species (39 novel and 40 classic) were assessed at baseline, 3 and 12 months post-therapy. All samples were analyzed using Checkerboard DNA-DNA hybridization. Out of the 39 novel species evaluated, eight were categorized as having strong and four as having moderate association with periodontitis. Our findings suggest strong evidence supporting Lancefieldella rimae, Cronobacter sakazakii, Pluralibacter gergoviae, Enterococcus faecalis, Eubacterium limosum, Filifactor alocis, Haemophilus influenzae, and Staphylococcus warneri, and moderate evidence supporting Escherichia coli, Fusobacterium necrophorum, Spiroplasma ixodetis, and Staphylococcus aureus as periodontal pathogens. These findings contribute to a better understanding of the etiology of periodontitis and may guide future diagnostic and interventional studies.

14.
Expert Rev Med Devices ; 20(7): 557-573, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37228179

RESUMO

INTRODUCTION: Peri-implantitis is the leading cause of dental implant loss and is initiated by a polymicrobial dysbiotic biofilm formation on the implant surface. The destruction of peri-implant tissue by the host immune response and the low effectiveness of surgical or non-surgical treatments highlight the need for new strategies to prevent, modulate and/or eliminate biofilm formation on the implant surface. Currently, several surface modifications have been proposed using biomolecules, ions, antimicrobial agents, and topography alterations. AREAS COVERED: Initially, this review provides an overview of the etiopathogenesis and host- and material-dependent modulating factors of peri-implant disease. In addition, a critical discussion about the antimicrobial surface modification mechanisms and techniques employed to modify the titanium implant material is provided. Finally, we also considered the future perspectives on the development of antimicrobial surfaces to narrow the bridge between idea and product and favor the clinical application possibility. EXPERT OPINION: Antimicrobial surface modifications have demonstrated effective results; however, there is no consensus about the best modification strategy and in-depth information on the safety and longevity of the antimicrobial effect. Modified surfaces display recurring challenges such as short-term effectiveness, the burst release of drugs, cytotoxicity, and lack of reusability. Stimulus-responsive surfaces seem to be a promising strategy for a controlled and precise antimicrobial effect, and future research should focus on this technology and study it from models that better mimic clinical conditions.


Assuntos
Anti-Infecciosos , Implantes Dentários , Peri-Implantite , Humanos , Materiais Biocompatíveis/farmacologia , Implantes Dentários/efeitos adversos , Anti-Infecciosos/farmacologia , Peri-Implantite/etiologia , Peri-Implantite/prevenção & controle , Titânio/farmacologia , Propriedades de Superfície , Biofilmes
15.
Colloids Surf B Biointerfaces ; 226: 113318, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37075523

RESUMO

Barrier membranes are critical in creating tissuecompartmentalization for guided tissue (GTR) and bone regeneration (GBR) therapies. More recently, resorbable membranes have been widely used for tissue and bone regeneration due to their improved properties and the dispensable re-entry surgery for membrane removal. However, in cases with membrane exposure, this may lead to microbial contamination that will compromise the integrity of the membrane, surrounding tissue, and bone regeneration, resulting in treatment failure. Although the microbial infection can negatively influence the clinical outcomes of regenerative therapy, such as GBR and GTR, there is a lack of clinical investigations in this field, especially concerning the microbial colonization of different types of membranes. Importantly, a deeper understanding of the mechanisms of biofilm growth and composition and pathogenesis on exposed membranes is still missing, explaining the mechanisms by which bone regeneration is reduced during membrane exposure. This scoping review comprehensively screened and discussed the current in vivo evidence and possible new perspectives on the microbial contamination of resorbable membranes. Results from eligible in vivo studies suggested that different bacterial species colonized exposed membranes according to their composition (collagen, expanded polytetrafluoroethylene (non-resorbable), and polylactic acid), but in all cases, it negatively affected the attachment level and amount of bone gain. However, limited models and techniques have evaluated the newly developed materials, and evidence is scarce. Finally, new approaches to enhance the antimicrobial effect should consider changing the membrane surface or incorporating long-term released antimicrobials in an effort to achieve better clinical success.


Assuntos
Regeneração Tecidual Guiada Periodontal , Membranas Artificiais , Regeneração Tecidual Guiada Periodontal/métodos , Implantes Absorvíveis , Colágeno , Regeneração Óssea , Politetrafluoretileno/farmacologia
16.
Adv Colloid Interface Sci ; 314: 102860, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36931199

RESUMO

Polypyrrole (PPy) is one of the most studied conductive polymers due to its electrical conductivity and biological properties, which drive the possibility of numerous applications in the biomedical area. The physical-chemical features of PPy allow the manufacture of biocompatible devices, enhancing cell adhesion and proliferation. Furthermore, owing to the electrostatic interactions between the negatively charged bacterial cell wall and the positive charges in the polymer structure, PPy films can perform an effective antimicrobial activity. PPy is also frequently associated with biocompatible agents and antimicrobial compounds to improve the biological response. Thus, this comprehensive review appraised the available evidence regarding the PPy-based films deposited on metallic implanted devices for biomedical applications. We focus on understanding key concepts that could influence PPy attributes regarding antimicrobial effect and cell behavior under in vitro and in vivo settings. Furthermore, we unravel the several agents incorporated into the PPy film and strategies to improve its functionality. Our findings suggest that incorporating other elements into the PPy films, such as antimicrobial agents, biomolecules, and other biocompatible polymers, may improve the biological responses. Overall, the basic properties of PPy, when combined with other composites, electrostimulation techniques, or surface treatment methods, offer great potential in biocompatibility and/or antimicrobial activities. However, challenges in synthesis standardization and potential limitations such as low adhesion and mechanical strength of the film must be overcome to improve and broaden the application of PPy film in biomedical devices.


Assuntos
Polímeros , Pirróis , Polímeros/farmacologia , Polímeros/química , Pirróis/farmacologia , Pirróis/química , Adesão Celular , Condutividade Elétrica
17.
J Proteome Res ; 22(3): 857-870, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36779809

RESUMO

The use of saliva as a protein source prior to microbiological and biological assays requires previous processing. However, the effect of these processing methods on the proteomic profile of saliva has not been tested. Stimulated human saliva was collected from eight healthy volunteers. Non-processed saliva was compared with 0.22 µm filtered, 0.45 µm filtered, and pasteurized saliva, by liquid chromatography-mass spectrometry. Data are available via ProteomeXchange with identifier PXD039248. The effect of processed saliva on microbial adhesion was tested using bacterial and fungus species and in biological cell behavior using HaCaT immortalized human keratinocytes. Two hundred and seventy-eight proteins were identified in non-processed saliva, of which 54 proteins (≈19%) were exclusive. Saliva processing reduced identified proteins to 222 (≈80%) for the 0.22 µm group, 219 (≈79%) for the 0.45 µm group, and 201 (≈72%) for the pasteurized saliva, compared to non-processed saliva. The proteomic profile showed similar molecular functions and biological processes. The different saliva processing methods did not alter microbial adhesion (ANOVA, p > 0.05). Interestingly, pasteurized saliva reduced keratinocyte cell viability. Saliva processing methods tested reduced the proteomic profile diversity of saliva but maintained similar molecular functions and biological processes, not interfering with microbial adhesion and cell viability, except for pasteurization, which reduced cell viability.


Assuntos
Proteômica , Saliva , Humanos , Saliva/química , Proteômica/métodos , Proteínas/análise , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos
18.
J Prosthet Dent ; 130(3): 341-350, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34991859

RESUMO

STATEMENT OF PROBLEM: The complete denture occlusal scheme may influence clinical performance and patient satisfaction. However, a consensus on which occlusal scheme should be used for complete denture users is lacking. As a result, many dentists choose the scheme based on their preferences and clinical experience. PURPOSE: The purpose of this review was to assess the methodological quality and summarize the scientific evidence from secondary studies about the influence of occlusal schemes on the clinical performance of and patient satisfaction with complete dentures. MATERIAL AND METHODS: Ten sources were surveyed according to the patient, intervention, comparison, outcome (PICO) strategy. Systematic reviews that evaluated the clinical performance and patient satisfaction (O) of rehabilitated edentulous patients with conventional complete dentures (P) under different occlusal schemes (I/C) were included. Methodological quality was assessed by using A MeaSurement Tool to Assess systematic Reviews (AMSTAR) 2 tool by 2 authors independently. The effect of each occlusal scheme in comparison with others was summarized and classified as positive, neutral, negative, or inconclusive based on the conclusions of the systematic review concerning clinical performance and patient satisfaction outcomes. RESULTS: The search led to the inclusion of 10 systematic reviews. Seven were classified as of critically low, 2 as low, and 1 as moderate methodological quality. The following occlusal designs were included and analyzed: bilateral balanced occlusion, lingualized occlusion, canine guidance, group function, and monoplane occlusion. Bilateral balanced occlusion and canine guidance obtained satisfactory results for both outcomes. Lingualized occlusion showed a trend toward better results than other occlusal schemes for normal and resorbed ridges. Group function presented mainly inconclusive results, and monoplane occlusion did not deliver satisfactory outcomes. CONCLUSIONS: The present overview concluded that occlusal schemes might interfere with the clinical performance of and patient satisfaction with complete dentures. Lingualized, bilateral balanced, and canine guidance are preferred compared with monoplane occlusion, but lingualized occlusion tends to show better results in some reviews. However, the results should be carefully considered because of the low quality of the systematic reviews included.


Assuntos
Planejamento de Dentadura , Satisfação do Paciente , Humanos , Revisões Sistemáticas como Assunto , Prótese Total , Oclusão Dentária , Oclusão Dentária Balanceada , Mastigação
19.
Crit Rev Microbiol ; 49(3): 370-390, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35584310

RESUMO

Biofilms are complex tri-dimensional structures that encase microbial cells in an extracellular matrix comprising self-produced polymeric substances. The matrix rich in extracellular polymeric substance (EPS) contributes to the unique features of biofilm lifestyle and structure, enhancing microbial accretion, biofilm virulence, and antimicrobial resistance. The role of the EPS matrix of biofilms growing on biotic surfaces, especially dental surfaces, is largely unravelled. To date, there is a lack of a broad overview of existing literature concerning the relationship between the EPS matrix and the dental implant environment and its role in implant-related infections. Here, we discuss recent advances in the critical role of the EPS matrix on biofilm growth and virulence on the dental implant surface and its effect on the etiopathogenesis and progression of implant-related infections. Similar to other biofilms associated with human diseases/conditions, EPS-enriched biofilms on implant surfaces promote microbial accumulation, microbiological shift, cross-kingdom interaction, antimicrobial resistance, biofilm virulence, and, consequently, peri-implant tissue damage. But intriguingly, the protagonism of EPS role on implant-related infections and the development of matrix-target therapeutic strategies has been neglected. Finally, we highlight the need for more in-depth analyses of polymicrobial interactions within EPS matrix and EPS-targeting technologies' rationale for disrupting the complex biofilm microenvironment with more outstanding translation to implant applications in the near future.


Assuntos
Anti-Infecciosos , Implantes Dentários , Humanos , Biofilmes , Matriz Extracelular , Matriz Extracelular de Substâncias Poliméricas
20.
Adv Colloid Interface Sci ; 311: 102805, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36434916

RESUMO

Plasma electrolytic oxidation (PEO) is a low-cost, structurally reliable, and environmentally friendly surface modification method for orthopedic and dental implants. This technique is successful for the formation of porous, corrosion-resistant, and bioactive coatings, besides introducing antimicrobial compounds easily. Given the increase in implant-related infections, antimicrobial PEO-treated surfaces have been widely proposed to surmount this public health concern. This review comprehensively discusses antimicrobial implant surfaces currently produced by PEO in terms of their in vitro and in vivo microbiological and biological properties. We present a critical [part I] and evidence-based [part II] review about the plethora of antimicrobial PEO-treated surfaces. The mechanism of microbial accumulation on implanted devices and the principles of PEO technology to ensure antimicrobial functionalization by one- or multi-step processes are outlined. Our systematic literature search showed that particular focus has been placed on the metallic and semi-metallic elements incorporated into PEO surfaces to facilitate antimicrobial properties, which are often dose-dependent, without leading to cytotoxicity in vitro. Meanwhile, there are concerns over the biocompatibility of PEO and its long-term antimicrobial effects in animal models. We clearly highlight the importance of using clinically relevant infection models and in vivo long-term assessments to guarantee the rational design of antimicrobial PEO-treated surfaces to identify the 'finish line' in the race for antimicrobial implant surfaces.


Assuntos
Anti-Infecciosos , Materiais Revestidos Biocompatíveis , Próteses e Implantes , Titânio , Animais , Anti-Infecciosos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Oxirredução , Propriedades de Superfície , Titânio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...